

Kernel Driver Tutorial

14 July 2015

In this tutorial two different approaches to accessing FPGA resources from application will be shown. The

assumption is that the FPGA resources are memory mapped registers.

For this tutorial, we simply installed two registers as shown in table below

We will write a value in pio_OUT.s1 and readback value from pio_IN.s1

Approach n.1: accessing resources using the /dev/mem file
As already stated, peripherals are connected to the lightweight HPS-to-FPGA bridge. The lightweight

bridge’s region of memory begins at address 0xFF200000, so to find the address of an FPGA peripheral,

simply add the peripheral’s offset as shown by Qsys to that address. In our case, the pio_OUT.s1

peripheral was assigned the offset 0x00010010, so the full address is simply 0xFF210010. In the same

way, the full address of pio_IN.s1 is 0xFF210020

The Linux kernel uses virtual memory, so we cannot directly write to address 0xFF200000 from a

userspace process, since that physical address is not mapped into the process’s address space. Despite the

best approach is to write a kernel driver, we will use a simpler method, which is to use the mmap system

call on the “/dev/mem” device file, which represents physical memory, to map the HPS-to-FPGA bridge’s

memory into the process memory.

The full source code of the application is attached to the post.Ignoring all of the error-handling and setup

code, the important parts of the program are the following.

gpio_map = mmap(NULL, PAGE_SIZE, PROT_WRITE, MAP_SHARED,

 fd, gpio_base);

gpio_mem = (unsigned char *)gpio_map;

*(gpio_mem+EXOR_GPIO_OUT_OFFSET) = value;

rvalue = *(gpio_mem+EXOR_GPIO_IN_OFFSET);

The mmap call maps a single page of memory beginning at 0xFF210000 into the process’s memory

space. The first argument to mmap is the virtual memory address we want the mapped memory to start at.

By leaving it NULL, we allow the kernel to use the next memory address available. The second argument is

https://en.wikipedia.org/wiki/Virtual_memory

Kernel Driver Tutorial

14 July 2015

the size of the region we want mapped. The size will always be a multiple of the page size (on Linux, this is 4

kB or 4096 bytes), so we specify the size of a single page even though we only need a byte.

The second line simply cast the gpio_map void pointer to an unsigned char pointer.

The, the third line writes to the memory address, setting the value passed on the command line. Notice

that gpio_mem is declared with the volatile keyword. This tells the compiler that the value stored at

this memory address can change without being written to from software. This disables certain compiler

optimizations that can cause incorrect behavior.

Finally, the fourth line reads back the value

To build the test executable, you will probably have to edit the Makefile to adjust the path to the gcc cross

compiler then simply type

make

on the command line. This will create an executable file that you can copy to your target device and run on

the target itself

scp test_lw root@<target IP address>:/home/root

Kernel Driver Tutorial

14 July 2015

Approach n.2: writing a kernel driver
In this section of the tutorial, we will implement a kernel driver so that the FPGA resources will be

accessible through a file in the /dev folder. After installing the driver, the value in the FPGA register will be

written and read by simply typing

echo 1 > /dev/exor_gpio

cat /dev/exor_gpio

Back in the old days, a device file was a special file created by running an old shell script

named MAKEDEV which called the mknod command to create every possible file in /dev, regardless of

whether the associated device driver would ever run on that system. The next iteration, devfs,

created /dev files when they were first accessed, which led to many interesting locking problems and

wasteful attempts to open device files to see if the associated device existed. The current version

of /dev support is called udev, since it creates /dev links with a userspace program. When kernel

modules register devices, they appear in the sysfs file system, mounted on /sys. A userspace program,

udev, notices changes in /sys and dynamically creates /dev entries according to a set of rules usually

located in /etc/udev/.

As in the previous section, we will set the delay by writing a byte to physical memory at address

0xFF210000. However, this address is not yet mapped into the kernel’s address space, so we will have to

that first. Fortunately, the kernel provides functions for properly mapping and accessing the memory space

for peripherals, which is termed IO memory.

First, we will need to request exclusive access to the memory region we want to write to.

#define LWHPS2FPGA_BRIDGE_BASE 0xFF200000

#define EXOR_GPIO_OFS 0x00010000

#define EXOR_GPIO_BASE (LWHPS2FPGA_BRIDGE_BASE + EXOR_GPIO_OFS)

#define EXOR_GPIO_SIZE PAGE_SIZE

res = request_mem_region(EXOR_GPIO_BASE, EXOR_GPIO _SIZE, "exor_gpio");

if (res == NULL) {

 /* do some error handling */

}

EXOR_GPIO_BASE is set to the base address we want to access, and EXOR_GPIO_SIZE is set to the page

size (it must be a multiple of the kernel page size, which is 4kb). As with the mmap system call, we can only

get memory a page at a time, so it makes sense to just request a whole page. Now that we know we have

exclusive access, we need to map the address into virtual memory.

void *exor_gpio_mem;

exor_gpio_mem = ioremap(EXOR_GPIO_BASE, EXOR_GPIO _SIZE);

if (exor_gpio_mem == NULL) {

 /* error handling */

Kernel Driver Tutorial

14 July 2015

}

We can now write to exor_gpio_mem to set FPGA registers. Of course, it’s not considered proper to just

do *exor_gpio_mem = value. Instead, we should use the iowrite* functions. In our case, we are

writing a single byte, so we use iowrite32 . All these functions are defined in include/asm-

generic/iomap.h

In order to integrate the kernel in the kernel building process, some further steps are required

1. Copy source files
The folder containing source files needs to be copied in the drivers folder of the Linux kernel source tree.

Source files include a file named Kconfig that tells the Linux kernel configuration user interface about the

new Exor GPIO driver

2. Modify the Kconfig file in the drivers folder
To make the Exor GPIO driver visible to the Linux Kernel configuration interface, it must be added at the

end of the Kconfig file that already exists in the drivers folder

The new lines are highlighted in the listing below

source "drivers/phy/Kconfig"

source "drivers/exor/Kconfig"

endmenu

3. Change Makefile in the drivers folder
Append the highlighted line at the end of the Makefile in the drivers folder to make the build process

know that the content of the exor folder has to be built when the EXORSYSGPIO option is selected

obj-$(CONFIG_IPACK_BUS) += ipack/

obj-$(CONFIG_NTB) += ntb/

obj-$(CONFIG_EXORSYSGPIO) += exor/

The EXORSYSGPIO option is defined in the drivers/exor/Kconfig file

Exor device configuration

menu "Exor devices"

config EXORSYSGPIO

 tristate "/dev/exor_gpio virtual device support"

Kernel Driver Tutorial

14 July 2015

 default y

 help

 Say Y here if you want to support the /dev/exorgpio device

endmenu

The tristate option make it possible to choose whether to load the module as a static driver (the driver is

compiled in the kernel image) or to make it a loadable module that can be loaded using the insmod utility

4. Change kernel configuration
Now we need to change kernel configuration in order to

1. enable dynamic module loading and unloading (this make it easy to develop a new kernel driver

since you just need to copy a single .ko file instead of the whole zImage)

2. enable the building of the new Exor GPIO driver

In a terminal, enter the base folder of Linux kernel source tree. If you type ls, you should see something like

this

Type

make ARCH=arm menuconfig

to start the configuration interface. Using the right arrow key, select "<Load>".

Kernel Driver Tutorial

14 July 2015

Enter the following configuration filename

<path to the base source tree>/arch/arm/configs/socfpga_defconfig

and press Enter. You will be bring back to list of configuration options

Using down arrow key, select "Enable loadable module support" and press Enter. In the

"Enable loadable module support" menu, select the settings as shown in the following

screenshot

Kernel Driver Tutorial

14 July 2015

Using the right arrow key, select "<Exit>".

Now navigate to "Device Drivers" -> "Exor devices" and select the Exor driver to be a loadable

module

Kernel Driver Tutorial

14 July 2015

Using the right arrow key, select "<Exit>" repeatedly until you reach the first configuration window.

Then, again using the right arrow key, select "<Save>" and confirm your intention to save the

configuration.

Finally, select "<Exit>" to quit the configuration application. This will bring you back to the console

prompt

Now build the kernel by typing the following commands

make ARCH=arm socfpga_defconfig

make ARCH=arm CROSS_COMPILE=<path-and prefix of the cross compiler> -j12 zImage

dtbs modules

The <path-and prefix of the cross compiler> is the full path to the gcc compiler without

the final "gcc". For example, if the gcc compiler's full path is

/opt/altera-linux/linaro/gcc-linaro-arm-linux-gnueabihf/bin/arm-linux-gnueabihf-

gcc

then the <path-and prefix of the cross compiler> is

/opt/altera-linux/linaro/gcc-linaro-arm-linux-gnueabihf/bin/arm-linux-gnueabihf-

After the build you should find (all paths are relative to the folder where you started the build process)

 zImage in arch/arm/boot

 socfpga_cyclone5.dtb in arch/arm/boot/dts

 exor_gpio.ko in drivers/exor

zImage and socfpga_cyclone5.dtb need to be copied on the SD card the system boots from.

socfpga_cyclone5.dtb have to be renamed as socfpga.dtb.

exor_gpio.ko can be copied to any folder of the target system using scp

cd drivers/exor

scp exor_gpio.ko root@<target IP address>:/home/root

Make an SSH connection to the target and login as root. At the console prompt, you can load the module

and test it

insmod exor_gpio.ko

cat /dev/exor_gpio

echo 20 > /dev/exor_gpio

cat /dev/exor_gpio

Kernel Driver Tutorial

14 July 2015

To see the output of the printk calls in the driver's source code, type

dmesg | tail

